GRA
Posts: 11523
Joined: Mon Sep 19, 2011 1:49 pm
Location: East side of San Francisco Bay

GCC: Leading UK scientists set out resource challenge of meeting EV targets by 2050

Mon Jun 24, 2019 7:08 pm

https://www.greencarcongress.com/2019/0 ... 24-uk.html
UK Natural History Museum Head of Earth Sciences Prof Richard Herrington and fellow expert members of SoS MinErals (an interdisciplinary program of NERC-EPSRC-Newton-FAPESP funded research) recently wrote a letter to the UK Committee on Climate Change pointing out that meeting UK electric car targets for 2050 would require production of just under two times the current total annual world cobalt production, nearly the entire world production of neodymium, three quarters the world’s lithium production and at least half of the world’s copper production.

A 20% increase in UK-generated electricity would be required to charge the current 252.5 billion miles to be driven by UK cars. . . .

The challenges set out in the letter are:
  • The metal resource needed to make all cars and vans electric by 2050 and all sales to be purely battery-electric by 2035. To replace all UK-based vehicles today with electric vehicles (not including the LGV and HGV fleets), assuming they use the most resource-frugal next-generation NMC 811 batteries, would take 207,900 tonnes cobalt, 264,600 tonnes of lithium carbonate (LCE), at least 7,200 tonnes of neodymium and dysprosium, in addition to 2,362,500 tonnes copper. . . .

    Even ensuring the annual supply of electric vehicles only, from 2035 as pledged, will require the UK to annually import the equivalent of the entire annual cobalt needs of European industry.

    The worldwide impact: If this analysis is extrapolated to the currently projected estimate of two billion cars worldwide, based on 2018 figures, annual production would have to increase for neodymium and dysprosium by 70%, copper output would need to more than double and cobalt output would need to increase at least three and a half times for the entire period from now until 2050 to satisfy the demand.

    Energy cost of metal production: This choice of vehicle comes with an energy cost too. Energy costs for cobalt production are estimated at 7000-8000 kWh for every tonne of metal produced and for copper 9000 kWh/t. The rare-earth energy costs are at least 3350 kWh/t, so for the target of all 31.5 million cars that requires 22.5 TWh of power to produce the new metals for the UK fleet, amounting to 6% of the UK’s current annual electrical usage. Extrapolated to 2 billion cars worldwide, the energy demand for extracting and processing the metals is almost 4 times the total annual UK electrical output.

    Energy cost of charging electric cars: There are implications for the electrical power generation in the UK needed to recharge these vehicles. Using figures published for current EVs (Nissan Leaf, Renault Zoe), driving 252.5 billion miles uses at least 63 TWh of power. This will demand a 20% increase in UK generated electricity.

    Challenges of using “green energy” to power electric cars: If wind farms are chosen to generate the power for the projected two billion cars at UK average usage, this requires the equivalent of a further years’ worth of total global copper supply and 10 years’ worth of global neodymium and dysprosium production to build the windfarms.

    Solar power is also problematic: it is also resource hungry; all the photovoltaic systems currently on the market are reliant on one or more raw materials classed as “critical” or “near critical” by the EU and/ or US Department of Energy (high purity silicon, indium, tellurium, gallium) because of their natural scarcity or their recovery as minor-by-products of other commodities. With a capacity factor of only ~10%, the UK would require ~72GW of photovoltaic input to fuel the EV fleet; over five times the current installed capacity. If CdTe-type photovoltaic power is used, that would consume over thirty years of current annual tellurium supply.
Both these wind turbine and solar generation options for the added electrical power generation capacity have substantial demands for steel, aluminium, cement and glass.

The co-signatories, like Prof Herrington, are part of SoS MinErals, an interdisciplinary program of NERC-EPSRC-Newton-FAPESP funded research focusing on the science needed to sustain the security of supply of strategic minerals in a changing environment. This program falls under NERC’s sustainable use of natural resources (SUNR) strategic theme. . . .
Guy [I have lots of experience designing/selling off-grid AE systems, some using EVs but don't own one. Local trips are by foot, bike and/or rapid transit].

The 'best' is the enemy of 'good enough'. Copper shot, not Silver bullets.

Return to “Business / Economy and Politics”